Structural model of the voltage-gated potassium channel Kv1.1 and molecular docking of Tc1 toxin from Tityus cambridgei to KcsA and Kv1.1

نویسندگان

  • Hsuan-Liang Liu
  • Jin-Chung Lin
چکیده

In this study, structural model of the pore loop region of the voltage-gated potassium channel Kv1.1 was constructed based on the crystallographic structure of KcsA. Subsequently, molecular docking experiments of Tc1 towards KcsA as well as Kv1.1 were performed. Tc1 forms the most stable complexes with these two channels when the side chain of K14 occupies the first Kþ binding site. Tc1 binds preferentially towards Kv1.1 than KcsA due to the stronger electrostatic and hydrophobic interactions. Furthermore, surface complementarity of the outer vestibules of the channel to the Tc1 spatial conformations also plays an important role in stabilizing these Tc1/channel complexes. 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular docking of the scorpion toxin Tc1 to the structural model of the voltage-gated potassium channel Kv1.1 from human Homo sapiens.

In this study, structural model of the pore loop region of the voltage-gated potassium channel Kv1.1 from human Homo sapiens was constructed based on the crystallographic structure of KcsA by structural homology. The pore loop region of Kv1.1 exhibits similar folds as that of KcsA. The structural feature of the selectivity filter of Kv1.1 is nearly identical to that of KcsA, whereas most of the...

متن کامل

Structural Basis of the Selective Block of Kv1.2 by Maurotoxin from Computer Simulations

The 34-residue polypeptide maurotoxin (MTx) isolated from scorpion venoms selectively inhibits the current of the voltage-gated potassium channel Kv1.2 by occluding the ion conduction pathway. Here using molecular dynamics simulation as a docking method, the binding modes of MTx to three closely related channels (Kv1.1, Kv1.2 and Kv1.3) are examined. We show that MTx forms more favorable electr...

متن کامل

Free energy simulations of binding of HsTx1 toxin to Kv1 potassium channels: the basis of Kv1.3/Kv1.1 selectivity.

The voltage-gated potassium channel Kv1.3 is an established target for treatment of autoimmune diseases. Hence, there are intense efforts to develop immunosuppressant drugs from Kv1.3 blockers. ShK toxin from sea anemone is the most advanced peptide in this regard, but its lack of selectivity for Kv1.3 over Kv1.1 is an ongoing concern. The scorpion toxin HsTx1 is an equally potent blocker of Kv...

متن کامل

A set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.

Homology models of the pore loop domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were generated based on the crystallographic structure of KcsA. The results of amino acid sequence alignment indicate that these Kv channels are composed of two structurally and functionally independent domains: the N-terminal 'voltage sensor' domain and the C-terminal 'pore loop' domain. The homology mod...

متن کامل

External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels.

External tetraethylammonium (TEA+) blocked currents through Kv1.1 channels in a voltage-independent manner between 0 and 100 mV. Lowering extracellular pH (pHo) increased the Kd for TEA+ block. A histidine at position 355 in the Kv1.1 channel protein (homologous to Shaker 425) was responsible for this pH-dependent reduction of TEA+ sensitivity, since the TEA+ effect became independent of pHo af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003